Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
J Exp Bot ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571323

RESUMO

Submergence stress hinders the direct seeding in rice cultivation. Rapid elongation of rice seed coleoptiles to reach the water surface enables rice to survive submergence stress. Gibberellin (GA) positively influences rice growth. However, the molecular mechanisms underlying GA-regulated coleoptile elongation under submergence conditions remain unclear. Here, we performed a WGCNA analysis to preliminarily investigate the mechanisms. Our results identify four key modules with a high correlation to the GA regulation of rice submergence tolerance. The genes within these modules are mainly involved in Golgi apparatus and carbohydrate metabolic pathways, suggesting involvement of these biological processes in enhancing rice submergence tolerance. Moreover, natural variation analysis reveals that the hub genes, specifically, Os03g0337900, Os03g0355600, and Os07g0638400, exhibited a strong correlation with the subspecies divergence of the coleoptile elongation phenotype. Mutation of Os07g0638400 results in a lower germination potential and a stronger inhibition of coleoptile elongation under submergence conditions in rice, indicating the reliability of the analyses. The hub genes identified in this study provide deep insights into understanding the molecular mechanisms underlying GA-dependent submergence stress tolerance in rice and provide a theoretical basis for innovating rice germplasm for direct seeding application.

2.
Dev Cell ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579721

RESUMO

The plant cell wall is a dynamic structure that plays an essential role in development, but the mechanism regulating cell wall formation remains poorly understood. We demonstrate that two transcription factors, SlERF.H5 and SlERF.H7, control cell wall formation and tomato fruit firmness in an additive manner. Knockout of SlERF.H5, SlERF.H7, or both genes decreased cell wall thickness, firmness, and cellulose contents in fruits during early development, especially in double-knockout lines. Overexpressing either gene resulted in thicker cell walls and greater fruit firmness with elevated cellulose levels in fruits but severely dwarf plants with lower gibberellin contents. We further identified that SlERF.H5 and SlERF.H7 activate the cellulose biosynthesis gene SlCESA3 but repress the gibberellin biosynthesis gene GA20ox1. Moreover, we identified a conserved LPL motif in these ERFs responsible for their activities as transcriptional activators and repressors, providing insight into how bifunctional transcription factors modulate distinct developmental processes.

3.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
4.
Planta ; 259(4): 83, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441675

RESUMO

MAIN CONCLUSION: WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular , Germinação/genética , Giberelinas , Proteínas de Homeodomínio/genética , Sementes/genética
5.
Funct Integr Genomics ; 24(2): 59, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498207

RESUMO

Rice is an essential but highly stress-susceptible crop, whose root system plays an important role in plant development and stress adaptation. The rice root system architecture is controlled by gene regulatory networks involving different phytohormones including auxin, jasmonate, and gibberellin. Gibberellin is generally known as a molecular clock that interacts with different pathways to regulate root meristem development. The exogenous treatment of rice plantlets with Gibberellin reduced the number of crown roots, whilst the exogenous jasmonic acid treatment enhanced them by involving a Germin-like protein OsGER4. Due to those opposite effects, this study aims to investigate the effect of Gibberellin on crown root development in the rice mutant of the plasmodesmal Germin-like protein OsGER4. Under exogenous gibberellin treatment, the number of crown roots significantly increased in osger4 mutant lines and decreased in the OsGER4 overexpressed lines. GUS staining showed that OsGER4 was strongly expressed in rice root systems, particularly crown and lateral roots under GA3 application. Specifically, OsGER4 was strongly expressed from the exodermis, epidermis, sclerenchyma to the endodermis layers of the crown root, along the vascular bundle and throughout LR primordia. The plasmodesmal protein OsGER4 is suggested to be involved in crown root development by maintaining hormone homeostasis, including Gibberillin.


Assuntos
Giberelinas , Glicoproteínas , Oryza , Giberelinas/farmacologia , Giberelinas/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo
6.
Plants (Basel) ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38498410

RESUMO

Prunus spachiana (Lavallée ex Ed.Otto) Kitam. f. ascendens (Makino) Kitam leaves exert natural anti-inflammatory effects by inhibiting nitric oxide formation. P. spachiana flowers bloom earlier than other Prunus spp. and thus could serve as a valuable resource for the horticulture and pharmaceutical industries. However, its seed dormancy class and germination traits remain uncharacterized. Thus, this study aimed to characterize the seed dormancy and germination of P. spachiana. Imbibition, phenological, and move-along experiments were performed, and the effects of H2SO4 treatment, hormone soaking, warm/cold stratification, and endocarp removal on germination were explored. Observation revealed that ripe seeds of P. spachiana contain developed embryos and are water permeable. Radicle and shoot emergence began in March and April, respectively, under natural conditions in the year following production. No seed germination was observed after 30 days of incubation at 4, 15/6, 20/10, or 25/15 °C under light/dark conditions, indicating the physiological dormancy of the seeds. Germination increased with prolonged stratification and was affected by incubation temperature. Seed scarification by H2SO4 and soaking with gibberellic acid (GA3) and fluridone were ineffective in breaking dormancy. However, GA3 soaking of the seeds after endocarp removal effectively induced germination (100%). These results indicate that P. spachiana seeds exhibit intermediate physiological dormancy.

7.
Plants (Basel) ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38498546

RESUMO

Aluminum toxicity poses a significant constraint on crop production in acidic soils. While phytohormones are recognized for their pivotal role in mediating plant responses to aluminum stress, the specific involvement of gibberellin (GA) in regulating aluminum tolerance remains unexplored. In this study, we demonstrate that external GA exacerbates the inhibitory impact of aluminum stress on root growth of rice seedlings, concurrently promoting reactive oxygen species (ROS) accumulation. Furthermore, rice plants overexpressing the GA synthesis gene SD1 exhibit enhanced sensitivity to aluminum stress. In contrast, the slr1 gain-of-function mutant, characterized by impeded GA signaling, displays enhanced tolerance to aluminum stress, suggesting the negative regulatory role of GA in rice resistance to aluminum-induced toxicity. We also reveal that GA application suppresses the expression of crucial aluminum tolerance genes in rice, including Al resistance transcription factor 1 (ART1), Nramp aluminum transporter 1 (OsNramp4), and Sensitive to Aluminum 1 (SAL1). Conversely, the slr1 mutant exhibits up-regulated expression of these genes compared to the wild type. In summary, our results shed light on the inhibitory effect of GA in rice resistance to aluminum stress, contributing to a theoretical foundation for unraveling the intricate mechanisms of plant hormones in regulating aluminum tolerance.

8.
Plant J ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536089

RESUMO

Plant height (PH) is an important factor affecting bast fiber yield in jute. Here, we report the mechanism of dwarfism in the 'Guangbaai' (gba) of jute. The mutant gba had shorter internode length and cell length compared to the standard cultivar 'TaiZi 4' (TZ4). Exogenous GA3 treatment indicated that gba is a GA-insensitive dwarf mutant. Quantitative trait locus (QTL) analysis of three PH-related traits via a high-density genetic linkage map according to re-seq showed that a total of 25 QTLs were identified, including 13 QTLs for PH, with phenotypic variation explained ranging from 2.42 to 74.16%. Notably, the functional mechanism of the candidate gene CoGID1a, the gibberellic acid receptor, of the major locus qPHIL5 was evaluated by transgenic analysis and virus-induced gene silencing. A dwarf phenotype-related single nucleotide mutation in CoGID1a was identified in gba, which was also unique to the dwarf phenotype of gba among 57 cultivars. Cogid1a was unable to interact with the growth-repressor DELLA even in the presence of highly accumulated gibberellins in gba. Differentially expressed genes between transcriptomes of gba and TZ4 after GA3 treatment indicated up-regulation of genes involved in gibberellin and cellulose synthesis in gba. Interestingly, it was found that up-regulation of CoMYB46, a key transcription factor in the secondary cell wall, by the highly accumulated gibberellins in gba promoted the expression of cellulose synthase genes CoCesA4 and CoCesA7. These findings provide valuable insights into fiber development affected by endogenous gibberellin accumulation in plants.

9.
Plant Physiol Biochem ; 210: 108541, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38552264

RESUMO

Heat shock transcription factors (Hsfs) play multifaceted roles in plant growth, development, and responses to environmental factors. However, their involvement in seed dormancy and germination processes has remained elusive. In this study, we identified a wheat class B Hsf gene, TaHsf-7A, with higher expression in strong-dormancy varieties compared to weak-dormancy varieties during seed imbibition. Specifically, TaHsf-7A expression increased during seed dormancy establishment and subsequently declined during dormancy release. Through the identification of a 1-bp insertion (ins)/deletion (del) variation in the coding region of TaHsf-7A among wheat varieties with different dormancy levels, we developed a CAPS marker, Hsf-7A-1319, resulting in two allelic variations: Hsf-7A-1319-ins and Hsf-7A-1319-del. Notably, the allele Hsf-7A-1319-ins correlated with a reduced seed germination rate and elevated dormancy levels, while Hsf-7A-1319-del exhibited the opposite trend across 175 wheat varieties. The association of TaHsf-7A allelic status with seed dormancy and germination levels was confirmed in various genetically modified species, including Arabidopsis, rice, and wheat. Results from the dual luciferase assay demonstrated notable variations in transcriptional activity among transformants harboring distinct TaHsf-7A alleles. Furthermore, the levels of abscisic acid (ABA) and gibberellin (GA), along with the expression levels of ABA and GA biosynthesis genes, showed significant differences between transgenic rice lines carrying different alleles of TaHsf-7A. These findings represent a significant step towards a comprehensive understanding of TaHsf-7A's involvement in the dormancy and germination processes of wheat seeds.

10.
Plant Physiol Biochem ; 210: 108543, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554534

RESUMO

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.

11.
J Exp Bot ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457356

RESUMO

The timing of the developmental transition from the vegetative to the reproductive stages is critical for angiosperm and fine-tuned by the integration of endogenous factors and external environmental cues to ensure proper and successful reproduction. Plants have evolved sophisticated mechanisms to response to diverse environmental or stress signals, which may be mediated by plant hormones which coordinate their flowering time. Endogenous and exogenous phytohormones such as gibberellin (GA), auxin, cytokinin (CK), jasmonate (JA), abscisic acid (ABA), ethylene (ET), brassinosteroids (BR) and the cross-talk among them are critical for the precise regulating of flowering time. Recent studies on the model flowering plant Arabidopsis thaliana revealed that diverse transcription factors and epigenetic regulators play key roles in the phytohormones that regulate floral transition. This review aims to summarize current knowledge on the genetic and epigenetic mechanisms that underlying the phytohormone control of floral transition in Arabidopsis, offering insights into how these processes are regulated and their implications for plant biology.

12.
Int J Biol Macromol ; 266(Pt 1): 131095, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537859

RESUMO

Gibberellin oxidases (GAoxs) identified from many species play indispensable roles in GA biosynthesis and GA signal transduction. However, there has been limited research conducted on the GAox family of Salix matsudana, a tetraploid ornamental tree species. Here, 54 GAox genes were identified from S. matsudana and renamed as SmGA20ox1-22, SmGA2ox1-24, SmGA3ox1-6, and SmGAox-like1/2. Gene structure and conserved motif analysis showed that SmGA3ox members possess the 1 intron and other SmGAoxs contain 2-3 introns, and motif 1/2/7 universally present in all SmGAoxs. A total of 69 gene pairs were identified from SmGAox family members, and the Ka/Ks values indicated the SmGAoxs experience the purifying selection. The intra species collinearity analysis implied S. matsudana, S. purpurea, and Populus trichocarpa have the close genetic relationship. The GO analysis suggested SmGAoxs are dominantly involved in GA metabolic process, ion binding, and oxidoreductase activity. RNA-sequencing demonstrated that some SmGAoxs may play an essential role in salt and submergence stresses. In addition, the SmGA20ox13/21 displayed the dominant vitality of GA20 oxidase, but the SmGA20ox13/21 still possessed low activities of GA2 and GA3 oxidases. This study can contribute to reveal the regulatory mechanism of salt and submergence tolerance in willow.

13.
J Integr Plant Biol ; 66(4): 771-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470298

RESUMO

Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.


Assuntos
Giberelinas , Oryza , Giberelinas/metabolismo , Oryza/genética , Oryza/metabolismo , Transdução de Sinais/genética , Sementes/metabolismo , Fenótipo
14.
Sci Total Environ ; 926: 171922, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522532

RESUMO

The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/análise , Pteris/metabolismo , Poluentes do Solo/análise , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Solo , Glucose/metabolismo
15.
Plant Sci ; 343: 112074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548138

RESUMO

As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.


Assuntos
Giberelinas , Populus , Giberelinas/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Plantas Geneticamente Modificadas/genética
16.
Plant J ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525669

RESUMO

Gibberellins (GAs) are major regulators of developmental and growth processes in plants. Using the degradation-based signaling mechanism of GAs, we have built transcriptional regulator (DELLA)-based, genetically encoded ratiometric biosensors as proxies for hormone quantification at high temporal resolution and sensitivity that allow dynamic, rapid and simple analysis in a plant cell system, i.e. Arabidopsis protoplasts. These ratiometric biosensors incorporate a DELLA protein as a degradation target fused to a firefly luciferase connected via a 2A peptide to a renilla luciferase as a co-expressed normalization element. We have implemented these biosensors for all five Arabidopsis DELLA proteins, GA-INSENSITIVE, GAI; REPRESSOR-of-ga1-3, RGA; RGA-like1, RGL1; RGL2 and RGL3, by applying a modular design. The sensors are highly sensitive (in the low pm range), specific and dynamic. As a proof of concept, we have tested the applicability in three domains: the study of substrate specificity and activity of putative GA-oxidases, the characterization of GA transporters, and the use as a discrimination platform coupled to a GA agonists' chemical screening. This work demonstrates the development of a genetically encoded quantitative biosensor complementary to existing tools that allow the visualization of GA in planta.

17.
Allergol. immunopatol ; 52(2): 48-50, mar. 2024. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-231091

RESUMO

This report is a case of anaphylaxis in an adolescent due to allergy to gibberellin-regulated proteins mediated by cofactors, in probable relation to a pollen/food allergy syndrome. It should also emphasizes the importance of obtaining a faithful clinical history, especially when it comes to adolescent patients as they tend to initiate toxic habits.(AU)


Assuntos
Humanos , Masculino , Adolescente , Hipersensibilidade Alimentar , Anafilaxia/tratamento farmacológico , Giberelinas , Citrus sinensis/toxicidade , Conjuntivite Bacteriana , Rinite Alérgica Sazonal , Pacientes Internados , Exame Físico , Hipersensibilidade , Alergia e Imunologia
18.
Front Plant Sci ; 15: 1333191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434426

RESUMO

In rice cultivation, the traits of semi-dwarfism and glutinous texture are pivotal for optimizing yield potential and grain quality, respectively. Xiangdaowan (XDW) rice, renowned for its exceptional aromatic properties, has faced challenges due to its tall stature and high amylose content, resulting in poor lodging resistance and suboptimal culinary attributes. To address these issues, we employed CRISPR/Cas9 technology to precisely edit the SD1 and Wx genes in XDW rice, leading to the development of stable genetically homozygous lines with desired semi-dwarf and glutinous characteristics. The sd1-wx mutant lines exhibited reduced gibberellin content, plant height, and amylose content, while maintaining hardly changed germination rate and other key agronomic traits. Importantly, our study demonstrated that exogenous GA3 application effectively promoted growth by compensating for the deficiency of endogenous gibberellin. Based on this, a semi-dwarf glutinous elite rice (Oryza sativa L.) Lines was developed without too much effect on most agronomic traits. Furthermore, a comparative transcriptome analysis unveiled that differentially expressed genes (DEGs) were primarily associated with the anchored component of the membrane, hydrogen peroxide catabolic process, peroxidase activity, terpene synthase activity, and apoplast. Additionally, terpene synthase genes involved in catalyzing the biosynthesis of diterpenoids to gibberellins were enriched and significantly down-regulated. This comprehensive study provides an efficient method for simultaneously enhancing rice plant height and quality, paving the way for the development of lodging-resistant and high-quality rice varieties.

19.
Allergol Immunopathol (Madr) ; 52(2): 48-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459890

RESUMO

This report is a case of anaphylaxis in an adolescent due to allergy to gibberellin-regulated proteins mediated by cofactors, in probable relation to a pollen/food allergy syndrome. It should also emphasizes the importance of obtaining a faithful clinical history, especially when it comes to adolescent patients as they tend to initiate toxic habits.


Assuntos
Anafilaxia , Citrus sinensis , Hipersensibilidade Alimentar , Humanos , Adolescente , Anafilaxia/diagnóstico , Anafilaxia/etiologia , Giberelinas/efeitos adversos , Alérgenos , Antígenos de Plantas , Hipersensibilidade Alimentar/diagnóstico
20.
Planta ; 259(4): 77, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421445

RESUMO

MAIN CONCLUSION: The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.


Assuntos
Mirtilos Azuis (Planta) , Mirtilos Azuis (Planta)/genética , Filogenia , Reprodução , Flores/genética , Duplicação Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...